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UNIQUENESS OF SYMPLECTIC CANONICAL
CLASS, SURFACE CONE AND SYMPLECTIC CONE

OF 4-MANIFOLDS WITH B+ = 1

TIAN-JUN LI & AI-KO LIU

Abstract
Let M be a closed oriented smooth 4-manifold admitting symplectic struc-
tures. If M is minimal and has b+ = 1, we prove that there is a unique
symplectic canonical class up to sign, and any real second cohomology class
of positive square is represented by symplectic forms. Similar results hold
when M is not minimal.

1. Introduction

Let M be a smooth, closed oriented 4-manifold. An orientation-
compatible symplectic structure on M is a closed 2-form ω such that
ω ∧ ω is nowhere vanishing and agrees with the orientation. Let ΩM

be the moduli space of such 2-forms. In the first part of this paper,
we devote ourselves to the understanding of the topology of this moduli
space, which can be studied in three ways.

First of all, on ΩM , there is a natural equivalence relation, the de-
formation equivalence. ω1 and ω2 in ΩM are said to be deformation
equivalent if there is an orientation-preserving diffeomorphism φ such
that φ∗ω1 and ω2 are connected by a path of symplectic forms. Clearly,
the group of orientation-preserving diffeomorphisms acts on the set of
connected components of ΩM , and the number of deformation classes
of symplectic structures is just the number of the orbits of this action.

Secondly, there is a map of canonical class K : ΩM −→ H2(M ;Z).
Any symplectic structure determines a homotopy class of compatible
almost complex structures on the cotangent bundle, whose first Chern

Received July 13, 2001.

331



332 tian-jun li & ai-ko liu

class is called the symplectic canonical class. For each symplectic canon-
ical class K, if we let ΩM,K be the subset of ΩM , whose elements have
K as the symplectic canonical class, then ΩM is the disjoint union of
the ΩM,K . There is also a natural equivalence relation on the set of
symplectic canonical classes. We say two symplectic canonical classes
K1 and K2 are equivalent if there is an orientation-preserving diffeomor-
phism φ such that φ∗K1 = ±K2. Symplectic structures in a connected
component have the same symplectic canonical class. Moreover if two
symplectic structures are related by an orientation-preserving diffeo-
morphism, so are their symplectic canonical classes. Therefore the set
of deformation equivalence classes of orientation-compatible symplectic
structures maps onto the set of equivalence classes of symplectic canon-
ical classes, and can be understood via the latter.

Thirdly, by taking the cohomology class, we have a projection CC :
ΩM −→ H2(M ;R). The image of this projection is called the symplectic
cone of M , and is denoted by CM . For each symplectic canonical class,
if we define the K-symplectic cone

CM,K = {e ∈ CM | e = [ω] for some ω ∈ ΩK }.
then CM is just the union of the CM,K (this union is in fact a disjoint
union, see Proposition 4.1).

It turns out that the determination of the number of deformation
classes of symplectic structures is a very hard problem. The first break-
through was made by Taubes [50], who showed that there is one defor-
mation class on CP 2. We [25] later showed that the uniqueness holds
for all S2-bundles and their blow ups. However, for other 4-manifolds, it
is not even known whether the number of deformation classes is always
finite.

Here we are able to provide some evidence for the finiteness by show-
ing that the the image of the map K is always finite. When b+(M) > 1
(b+(M) is the dimension of a maximal positive subspace of H2(M ;R)),
it follows from [48] and [54] that there are finitely many symplectic
canonical classes. In addition, any 4-manifold with Kähler structures
has only one equivalent class of symplectic canonical classes (see [4] and
[11]). More recently, examples of 4-manifolds with b+ > 1 and inequiv-
alent classes of symplectic canonical classes were first obtained in [36],
and later in [19], [47] and [53] (see also [5], [15] and [37] for the recent
results for the moduli space of complex structures on 4-manifolds). In
this paper, our first main result completely settles this issue for the case
b+ = 1.
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Theorem 1. Let M be a smooth, closed oriented 4-manifold with
b+ = 1 and suppose ΩM is not empty. Then the number of equivalent
classes of the symplectic canonical classes is one. Furthermore, if M is
minimal, there is a unique symplectic canonical class up to sign.

Here M is said to be (smoothly) minimal if EM is the empty set,
where EM is the set of cohomology classes whose Poincaré duals are
represented by smoothly embedded spheres of square −1. Consequently
we obtain:

Corllary 1. Let M be a smooth, closed oriented 4-manifold. The
number of equivalence classes of the symplectic canonical classes is fi-
nite.

To the contrary, in higher dimensions, there can be an infinite num-
ber of equivalence classes. Let us briefly indicate the construction of
such a manifold. Using their knot surgery, Fintushel and Stern [9] have
constructed infinite number of symplectic 4-manifolds homeomorphic
to K3, whose diffeomorphism types are distinguished by the number of
their Seiberg-Witten basic classes. As can be shown with the methods
in [42], the products of those manifolds with S2 are diffeomorphic, and
it carries infinite number of equivalent classes.

We also have some substantial results about the map CC. More pre-
cisely, for a 4-manifold with b+ = 1 and nonempty symplectic cone, we
can characterize the K-symplectic cones CM,K , and from which, obtain
a characterization of the symplectic cone CM itself.

To determine the K-symplectic cone, the first step is to investigate
the set of ‘K-stable’ classes of symplectic surfaces, AM,K , which we
define now. Let AM,ω be the set of s ∈ H2(M ;Z) whose Poincaré duals
can be represented by embedded ω-symplectic surfaces. Define

AM,K = {e ∈ H2(M ;Z) | e ∈ AM,ω for all ω ∈ ΩM,K}.
Built on results in [50], [24], we are able to compute the symplectic

Seiberg-Witten invariants on those 4-manifolds and use them to probe
a large part of AM,K . To state the result, we need to introduce yet
another concept, the forward cone associated to a symplectic canonical
class. On a closed oriented 4-manifold with b+ = 1, the set of classes
of positive square P fall into two connected components. Given an
orientation-compatible symplectic form ω, we will call the component
containing [ω] the forward cone FP associated to ω. Similarly, given a
symplectic canonical class K, we will call the component containing CK

the forward cone associated to K and denote it by FP(K).
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For a minimal 4-manifold with b+ = 1 and a symplectic canonical
class K, the result we need about AM,K is that (see Proposition 4.2) it
contains large multiples of any class in the forward cone FP(K).

Comparing with a result of Donaldson (see [6]), which states that the
Poincaré dual of the class of a sufficiently high multiple of an integral
symplectic form can be represented by symplectic submanifolds, it is
natural to expect that any class in the forward cone is represented by
symplectic forms. Using the inflation process of Lalonde and McDuff
(see [17], [18], [31] and [2]), we can show that this is indeed the case.

Theorem 2. Let M be a minimal closed, oriented 4-manifold with
b+ = 1 and K be a symplectic canonical class. Then

CM,K = FP(K).

Consequently, any real cohomology class of positive square is represented
by an orientation-compatible symplectic form.

For non-minimal 4-manifolds, it is no longer true that any real
cohomology class of positive square is represented by an orientation-
compatible symplectic form, due to the presence of the set E . In fact
what is relevant for theK-symplectic cone is the subset ofK-exceptional
spheres

EM,K = {E ∈ EM |E ·K = −1}.
An important fact from [25] is that EM,K lies in AM,K . From this,
together with the blow up formula for Gromov-Taubes invariants in
[27], we can obtain:

Theorem 3. Let M be a minimal closed, oriented 4-manifold with
b+ = 1 and K be a symplectic canonical class. Then

CM,K = {e ∈ FP(K) | e · E > 0 for any E ∈ EM,K}.

Moreover, for the symplectic cone CM , we have:

Theorem 4. Let M be a closed, oriented 4-manifold with b+ = 1
and CM nonempty. Then

CM = {e ∈ P | 0 < |e · E| for all E ∈ E }.

Let us remark that, on a complex surface, our K-symplectic cone is
similar to (often larger than) the Kähler cone. A priori the Kähler cone
is convex because the sum of two Kähler forms is still a Kähler form,
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while our K-symplectic cone may not have this property because the
sum of two symplectic forms may fail to be a symplectic form. However,
for 4-manifolds with b+ = 1, it is easy to see from Theorem 3 that our
K-symplectic cone turns out to be convex.

As we mentioned, the knowledge of the set AM,K is crucial in the
understanding of the moduli space of symplectic forms. We gradually
realize that the set itself is an important invariant of M . In the last
part of the paper, we devote ourselves to studying it.

For the same class of 4-manifolds above, we are able to determine
which multiples of K are in AM,K . As a pleasant byproduct, we obtain
an analogue of Casteluovo’s criterion of rational surfaces.

Corllary 2. Let M be a minimal symplectic 4-manifold with sym-
plectic canonical class K. If b1 = 0 and 2K �= 0, and 2K is not in
AM,K , then M is CP 2 or S2 × S2.

We also define the rational K-surface cone SQ
M,K to be the convex

subset of H2(M ;Q) generated by elements in AM,K . The rational K-
surface cone is a less refined object but easier to study. Our main result
about the K-surface cone is

Theorem 5. Let M be a closed, oriented 4-manifold with b+ = 1
and symplectic canonical class K. Then

FPQ(K) +
∑

Ei∈EK

Q+Ei ⊂ SQ
M,K ⊂ FPQ(K) +

∑
Ei∈EK

Q+Ei,

where FPQ(K) and FPQ(K) are the sets of rational classes in
FP(K) and FP(K) respectively.

On a complex surface, by the Nakai-Moishezon criterion, a rational
type (1, 1) cohomology class with positive square is represented by a
Kähler form if and only if it is positive on any irreducible holomorphic
curve. We notice that, for the 4-manifolds in Theorems 2, 3 and 5, these
theorems imply that a rational cohomology class with positive square
is represented by a symplectic form if and only if it is positive on any
class in AM,K , thus providing a sort of symplectic analogue.

Actually, if we define the rational K-symplectic cone CQ
K to be the

set of rational classes in the K-symplectic cone, then immediate from
the definitions, then inside H2(M ;Q), the rational K-surface cone is
contained in the dual of the rational K-symplectic cone and vice versa.
Moreover, Theorems 2, 3 and 5 suggest that there is the following strong
duality:
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Duality Conjecture. Let M be a closed, oriented 4-manifold with
b+ = 1. Suppose K is a symplectic canonical class, then the rational
K-surface cone and the rational K-symplectic cone are dual to each
other.

For a minimal 4-manifold, this conjecture simply asks whether the
rational K-surface cone is the closure of the forward cone. We are able
to confirm it for several classes of minimal 4-manifolds (see Proposi-
tion 6.5).

After the first draft of this paper appeared, we were informed by
P. Biran that weaker versions of our Theorems 2 and 3 appeared in [2]
and [3] (see Theorem 3.2 in page 297 in [3] and Theorem 3.2 B in pages
9–10 in [2]). The set ‘Class C’ that appears in his theorems is a rather
general notion. In fact, following from the results in our paper, it is
precisely the set of 4-manifolds M with b+ = 1 and CM nonempty.

The organization of this paper is as follows. In §2, we review the
Seiberg-Witten theory and the Gromov-Taubes theory on symplectic
4-manifolds, in particular those with b+ = 1. In §3, we present the
proof of Theorem 1. The K-symplectic cone and the symplectic cone
are studied in Section 4. In §4.1, we deal with minimal 4-manifolds
and prove Theorem 2. In §4.2, we deal with non-minimal 4-manifolds
and prove Theorems 3–4. We would like to mention that some of the
results in §4 appeared in [31] in slightly weaker form (see the remark
after Proposition 4.3). In §5, we prove Corollary 2. In §6, we study the
Duality conjecture.

We would like to thank V. Kharlamov, J. Kollár, R. Lee, I. Smith
and G. Tian for their interest in this work. We would also like to
thank P. Biran for some very useful remarks. This research is partially
supported by NSF.

Conventions. In the rest of the paper, we will make the following sim-
plifications. An integral cohomology class is identified with its Poincaré
dual, and a complex line bundle is identified with its first Chern class.
A symplectic 4-manifold refers to a pair consisting of a closed oriented
4-manifold M with an orientation-compatible symplectic form ω. All
the symplectic forms are orientation-compatible and all the diffeomor-
phisms are orientation preserving. All the surfaces are embedded unless
specified otherwise. We will often drop M from the notations like ΩM ,
ΩM,K , CM,K , AM,ω, AM,K and SM,K where there is no confusion.
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2. The Seiberg-Witten invariants and the Gromov-Taubes
invariants of symplectic 4-manifolds

In this section we first review the Seiberg-Witten theory on sym-
plectic 4-manifolds, in particular those with b+ = 1. Then we review
the Gromov-Taubes theory of counting embedded symplectic surfaces
in symplectic 4-manifolds. Finally we review the equivalence between
the two theories on symplectic 4-manifolds with b+ = 1.

2.1 The Seiberg-Witten invariants of symplectic
4-manifolds

In this subsection we review the Seiberg-Witen invariants. For more
details, see e.g., [38] and [46], and for the Seiberg-Witten invariants on
symplectic 4-manifolds, see [48].

The Seiberg-Witten invariant SW is defined on the set of Spinc

structures SP. Associated to each Spinc structure L is a rank 2 com-
plex vector bundle, whose determinant line bundle c1(L) is called the
determinant bundle of L. A useful fact to keep in mind is that SP is
an affine space modelled on H2(M ;Z). So, when fixing L, any nonzero
class e ∈ H2(M ;Z) gives rise to a Spinc structure, denoted by L ⊗ e.
And any Spinc structure is of this form. The determinant line bundle
of L ⊗ e is related to that of L by c1(L ⊗ e) = c1(L) + 2e.

Fix a riemannian metric g and a real self-dual 2-form µ on M . The
Seiberg-Witten equations can be written down for any Spinc structure
L (we refer the readers to [38] for the actual equations). Let M(M,L)
denote the moduli space of the Seiberg-Witten equations. For generic
pairs (g, µ), M(M,L) has the nice property that it is a compact mani-
fold of real dimension

2d(L) = 1
4
(2χ(M) + 3σ(M))− 1

4
(c1(L) · c1(L)).

Here χ(M) and σ(M) are the Euler characteristic and the signature of
M respectively. Furthermore, an orientation of the real line det+ =
H0(M ;R)⊗Λb1H1(M ;R)⊗Λb+H+(M ;R) naturally orients M(M,L).
Here b1 is the first Betti number of M and H+(M ;R) is a maximal
positive subspace of H2(M ;R). In addition, there is a naturally defined
circle bundle on M×M(M,L), whose Euler class induces a map φ from
H∗(M ;Z) to H2−∗(M(M,L);Z).

Now we give the definition of SW :
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Definition 2.1. Fix an orientation for the line det+ and a Spinc

structure L. Fix also a generic pair (g, µ) with the salient proper-
ties above. Let γ1 ∧ · · · ∧ γp be a decomposable element in Λp(H1(M ;
Z)/Torsion). Then the value of SW (M,L) ∈ Λ∗H1(M ;Z) is defined as
follows:
(2.1)

SW (M,L; γ1 ∧ · · · ∧ γp) =
∫
M(M,L)

φ(γ1) ∧ · · · ∧ φ(γp) ∧ φ(pt)(2d−p)/2,

where pt is the class of a point in H0(M ;Z).

When b+ > 1, the value of SW is independent of the choice of the
generic pair (g, µ). Hence SW can be viewed as a map from the set
of Spinc structures SP to Λ∗H1(M ;Z). Let SW i(M,L) denote the
part of SW (M,L) in ΛiH1(M ;Z). Suppose η is the positive generator
of Λ0H1(M ;Z) ≡ Z. Then the integer SW 0(M,L; η) will be simply
denoted by SW 0(M,L).

When b+ = 1, SW also depends on the choice of a chamber. On
a 4-manifold with b+

2 = 1, the set of real second cohomology classes
with positive square P is a cone with two connected components. Pick
one of them and call it the forward cone. Given a metric g, there is
a unique self-dual harmonic 2-form ωg for g in the forward cone with
ω2

g = 1. For a pair (g, µ) and a Spinc structure L, define the discriminant
�L(g, µ) =

∫
(c1(L) − µ)ωg. The set of pairs (g, µ) with positive and

negative discriminant are called the positive and negative L chamber
respectively. The map SW (M,L) is constant on any L chamber. So
in the case b+ = 1, given a choice of the the forward cone and a Spinc

structure, we can define SW+(M,L) and SW−(M,L) for the positive
and negative L chambers respectively. SW i±(M,L) are similarly defined.

From now on, when there is no confusion, we will often drop M from
SW i(M,LK−1 ⊗ e) or SW i±(M,LK−1 ⊗ e).

Recall that a symplectic 4-manifold is a closed oriented 4-manifold
with an orientation-compatible symplectic form ω. When M is a sym-
plectic 4-manifold, we have the following facts.

1. As mentioned in §1, the symplectic form ω (actually, the deforma-
tion class of ω) determines a unique homotopy class of ω-compatible
almost complex structures, and hence a canonical line bundle K. These
almost complex structures induce a Spinc structure LK−1 with K−1 as
its determinant line bundle.

2. Since K ·K = 2χ(M)+2σ(M), the formal dimension of the Seiberg-
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Witten moduli space of LK−1 ⊗ e is then give by

(2.2) 2d = e · e−K · e.

3. There is a natural orientation of the line det+.

4. When b+ = 1, as mentioned in §1, ω determines the choice of the
forward cone. With respect to this choice, the negative chamber is called
the symplectic chamber.

Hence we will use the symplectic structure to orient the Seiberg-
Witten moduli spaces. In the case b+ > 1, the SW invariant so defined
will be denoted by SWω; and, in the case b+ = 1, use the symplectic
structure to define SWω,+ and SWω,− as well.

A fundamental result of Taubes is:

Theorem 2.2 (see [48]). Let M be a symplectic 4-manifold with
symplectic canonical class K. Then SW 0

ω(LK−1) = 1 when b+ > 1, and
SW 0

ω,−(LK−1) = 1 when b+ = 1.

An involution on the set of Spinc structure induces the following
symmetry of the Seiberg-Witten invariants:

Symmetry Lemma 2.3 ([54]). Let M be a symplectic 4-manifold
with b+ = 1 and symplectic canonical class K. Then, for any integral
class e,

SW i
ω,+(LK−1 ⊗ e) = (−1)(1−b1−i+b+)/2SW i

ω,−(LK−1 ⊗ (K − e)).

Notice that, by the symmetry lemma and Theorem 2.2, we have
SW 0

+(LK−1 ⊗K) = ±1.
The following inequalities constrain the range of symplectic forms:

Theorem 2.4. Let M be a smooth, closed oriented 4-manifold.

1. ([49]) Suppose M has b+ > 1 and e is represented by a symplectic
form ω with K as its symplectic canonical class. If L is an integral
class such that SWω(LK−1 ⊗ L) is nontrivial, then K · e ≥ L · e
with equality only if K = L.

2. ([25]) Suppose M has b+ = 1. Suppose e1 and e2 are represented
by symplectic forms with K1 and K2 as their symplectic canonical
classes respectively, and satisfies e1 ·e2 > 0. Then K1 ·e1 ≥ K2 ·e1,
and equality holds only if K1 −K2 is a torsion class.
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2.2 Gromov-Taubes invariants of symplectic 4-manifolds

Let M,ω be a closed symplectic 4-manifold with symplectic canonical
class K. Like the Seiberg-Witten invariants, the Gromov-Taubes in-
variants, introduced by Taubes in [50], are defined for any class e ∈
H2(M ;Z) and take values in ⊕Λ∗H1(M ;Z).

When e is a nonzero integral class, introduce the Gromov-Taubes
dimension:

d(e) = e · e−K · e.
d(e) is the expected maximal complex dimension of the components of
pseudo-holomorphic curves (the domain of the curves can be any Rie-
mann surfaces with arbitrary number of connected components) repre-
senting e.

If d(e) ≥ 0, fix an integer p ∈ {0, 1, · · · , d} and then fix γ1∧· · ·∧γ2p ∈
Λ2pH1(M ;Z). As in the case of Seiberg-Witten invariants, it suffices to
define Grω(M, e)(γ1 ∧ · · · ∧ γ2p). Fixing a compatible almost complex
structure J , let H(e, J, Z,Γ) be the set of J-holomorphic curves repre-
senting e, and passing through a set of d− p points Z, and intersecting
Γ, a set of 2p disjoint circles representing γ1, . . . , γ2p.

For generic J, Z and Γ, H(e, J, Z,Γ) has the following properties:

1. H(e, J, Z,Γ) is a finite set.

2. Let h ∈ H(J, Z,Γ). Let C1, · · · , Ck be the irreducible components
of h which represent the classes e1, · · · , ek and have multiplicities
m1, · · · ,mk. Then C1, · · · , Ck are embedded and disjoint.

3. mj = 1 unless Cj is a torus and e2
j = 0.

4. e2
j ≥ −1, and e2

j = −1 only if Ck is a sphere.

5. To each h ∈ H(e, J, Z,Γ), an integer q(h) can be assigned in a
delicate way.

Definition 2.5. When e is the zero class, Grω(M, 0) is simply de-
fined to be 1. When e is not zero, fix γ1 ∧ · · · ∧ γ2p ∈ Λ2pH1(M ;Z).
Choose generic (J, Z,Γ) with the salient properties above. Grω(M, e)(γ1

∧ · · · ∧ γ2p) is then defined to be
∑

q(h).

When there is no confusion, we will freely drop M from Grω(M, e).
The Gromov-Taubes invariants are independent of the choice of the

generic (J, Z,Γ). In fact they only depend on the deformation class of
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the symplectic form and it is natural with respect to diffeomorphisms.
A version of Gromov-Taubes invariants was introduced by Ruan in [44].
It was also shown in [14] that the Gromov-Taubes invariants can be
constructed from the Ruan-Tian invariants in [45].

Suppose e is a class with nontrivial Gromov-Taubes invariant. Then
for generic J, Z,Γ), there exists a J-holomorphic curve h representing
e satisfying Properties 2–4 above. Since any embedded J-holomorphic
curve is an embedded symplectic surface, it is clear that, if mj = 1
for all j, then e is represented by an embedded symplectic surface. If
mj > 1 for some j, then Cj is a torus with square zero. In this case, we
have the following simple fact.

Lemma 2.6. Let M be a symplectic 4-manifold and e be an integral
class with square zero. If e can be represented by connected embedded
symplectic surfaces, then a positive multiple of e can also be represented
by embedded symplectic surfaces.

Proof. Let C be a connected embedded symplectic surface repre-
senting e. By the symplectic neighborhood theorem, the tubular neigh-
borhood of C is symplectically a product C ×D2, where D2 is a 2-disk.
For any positive integer n, pick n points in D2 and we get n disjoint
embedded symplectic surfaces whose disjoint union represents ne. The
proof is complete. q.e.d.

Thus by Properties 1–4 and Lemma 2.6 we have:

Theorem 2.7 ([51]). Let M be a symplectic 4-manifold. If e ∈
H2(M ;Z) and Grω(e) is nontrivial, then e can be represented by an em-
bedded symplectic surface whose only components with negative square
are spheres with square −1.

Given a symplectic sphere Σ with square −1 in M , one can replace
a neighborhood of Σ by a symplectic ball to obtain a new symplectic 4-
manifold. This process is called (symplectic) blowing down. The reverse
process is called (symplectic) blowing up (at a point in the symplectic
ball).

Let EM,ω be the set of classes which are represented by symplectic
−1 spheres. M is called symplectically minimal if EM,ω is empty.

Since every symplectic 4-manifold M can be obtained by blowing
up a minimal symplectic 4-manifold N at a number of points (see [32]),
the following blow up formula is useful to compute the Gromov-Taubes
invariants of non-minimal symplectic 4-manifolds.
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Theorem 2.8 (see [27]). Let M,ω be a symplectic 4-manifold with
b+ = 1. Suppose E ∈ EM,ω is represented by the symplectic sphere Σ.
Let N, β be the symplectic manifold obtained by blowing down Σ. If
v ∈ H2(N ;Z) and u = v − lE for some integer l. Then, under the
canonical identification between Λ∗H1(N ;Z) and Λ∗H1(M ;Z),

Grω(M,u) = Pr(2d(u))Grβ(N, v).

Here pr(2d(u)) is the projection from Λ∗H1(M ;Z) to ⊕2d(u)
i=0 ΛiH1(N ;Z).

2.3 Equivalence between SW and Gr in the case b+ = 1

In this subsection, M is a symplectic 4-manifold with b+ = 1. Another
fundamental and deep result of Taubes ([50]) is

Theorem 2.9. Let M,ω be a symplectic 4-manifold with b+ = 1.

1. If SWω,−(LK−1 ⊗ e) is nontrivial, then there are positive inte-
gers ni and classes ei such that e can be written as e =

∑
i niei

and ei is represented by an ω-symplectic surface. In particular, if
SWω,−(LK−1 ⊗ e) is nonzero, then e · ω ≥ 0 and e · ω = 0 only if
e = 0.

2. If M is minimal, then SWω,− = Grω. For a non-minimal sym-
plectic 4-manifold, the above conclusion holds with the additional
assumption that

(2.3) e · E ≥ −1 for each E ∈ Eω.

For classes violating the condition (2.3), SWω,− and Grω are dif-
ferent. To extend the equivalence to those classes McDuff introduces a
map Gr′ω (see [30]). It is a variation of the map Gr which takes into
account multiply covered −1 spheres, and coincides with Grω for all
classes satisfying (2.3). It was shown in [27] that indeed Gr′ω = SWω,−
for all classes not satisfying (2.3).

3. Uniqueness of symplectic canonical class

In this section we will present the proof of Theorem 1 and Corol-
lary 1, which rely on the computation of the Seiberg-Witten invariants.

We start with citing the following simple, but useful lemma concern-
ing the intersection pairing of a 4-manifold with b+ = 1 (see [25]).
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Lemma 3.1 (Light Cone Lemma). Suppose M is a manifold with
b+ = 1. Let A and B be two classes in H2(M ;R) with A2 ≥ 0.

1. If B ·A = 0, then B2 ≤ 0. And B2 = 0 iff A2 = 0 and B = rA up
to torsion.

2. If A and B are both in the closure of the forward cone, then A·B ≥
0.

Now we turn to the computation of the SW invariants.

Lemma 3.2. Let M,ω be a minimal symplectic manifold with b+ =
1 and the symplectic canonical class K. Let e be a class in H2(M ;Z).

I. Suppose K2 ≥ 0 and K · ω ≥ 0.

If (K−1 + 2e) · ω ≥ 0 and SWω,+(LK−1 ⊗ e) is nontrivial, then:

I.1. e = K if K2 > 0 or K is a torsion class.

I.2. e = rK for some rational number r ∈ [1/2, 1] or 2e−K is a
torsion class if K2 = 0.

II. Similarly, if (K−1+2e)·ω ≤ 0 and SWω,−(LK−1⊗e) is nontrivial,
then:

II.1. e is the zero class if K2 > 0 or K is a torsion class.

II.2. e = rK for some rational number r ∈ [0, 1/2] or 2e−K is a
torsion class if K2 = 0.

Proof. Since K2 ≥ 0 and K ·ω ≥ 0, K is in the closure of the forward
cone.

Case I: (LK−1 + 2e) · ω ≥ 0 and SWω,+(LK−1 ⊗ e) is nontrivial.
By the Symmetry Lemma 2.3,

SW i
ω,+(LK−1 ⊗ e) = ±SW i

ω,−(LK−1 ⊗ 2(K − e)).

Thus SWω,−(LK−1 ⊗2(K−e)) is nontrivial. By Theorem 2.9, if K �= e,
then (K − e) · ω > 0 and Grω(K − e) is nontrivial. Furthermore, since
M is minimal, by Theorem 2.7, K − e is represented by an embedded
symplectic surface whose components all have nonnegative square. So
(K − e)2 ≥ 0 and K − e is in the forward cone.
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Let us first deal with the case that K is a torsion class. Since
K · ω = 0, we see that e · ω ≥ 0. And if e �= K, e · ω = (e−K) · ω < 0.
This is a contradiction. Therefore, in this case, e must be equal to K.

Now let us treat the case that K is not a torsion class. Since K − e
is in the forward cone,

(3.1) (K − e) ·K ≥ 0.

Suppose (K−1 − 2e) · ω = 0, then K − 2e is a torsion class. The
Seiberg-Witten dimension of LK−1 ⊗e, which should be positive, is then
given by e · e−K · e = −K2/2. Since K2 is assumed to be nonnegative,
we must have K2 = 0.

Now assume that (K−1+2e)·ω is strictly positive. So there is a c ≥ 1
such that (K− c(K−1 +2e)) ·ω = 0 and hence (K− c(K−1 +2e))2 ≤ 0,
with equality only if K − c(K−1 + 2e) = 0. However,

(K − c(K−1 + 2e))2 = ((1 + c)K − 2ce)2

= (1− c)2K2 + 4c(K2 − e ·K) + 4c2(e2 − e ·K).

All three terms are nonnegative, the first by assumption, the second by
(3.1), the third being the Seiberg-Witten dimension of LK−1 ⊗ e.

When K2 > 0, equality holds if and only if c = 1, and thus (K− e) ·
ω = 0.

When K2 = 0, equality holds if and only if e2 = e · K = 0. Since
K is not a torsion class, by the light Cone Lemma 3.1, e = rK. r is no
bigger than one since (K − e) · ω ≥ 0 and r is no less than 1/2 since
(K−1 + 2e) · ω ≥ 0. We have thus finished the proof of Case I.

Case II: (K−1 + 2e) · ω ≤ 0 and SWω,−(LK−1 ⊗ e) is nontrivial.
Then (K−1 + 2(K − e)) · ω ≥ 0 and SWω,+(LK−1 ⊗ (K − e)) is

nontrivial. Thus we can similarly determine K − e and hence e itself.
The proof of the lemma is complete.

We will need the wall crossing formulas in [24], [27] (see also [40]
and [41]).

Lemma 3.3. Let M,ω be a symplectic 4-manifold with b+ = 1 and
symplectic canonical class K. Let e be a class in H2(M ;Z). When
b+ = 1, the choice of the forward cone is just an orientation of the line
H+ = Λb+H+, so it induces an orientation of Λb1H1.

1. Suppose d(e) ≥ b1. Let γ1 · · · , γb1 be a basis of H1(M ;Z)/Torsion
such that γ1 ∧ · · · ∧ γp is the dual orientation of the symplectic
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orientation on Λb1H1(M ;Z). Then

SW b1
ω,−(LK−1⊗e; γ1∧· · ·∧γp)−SW b1

ω,+(LK−1⊗e; γ1∧· · ·∧γp) = 1.

2. Suppose d(e) ≥ 0 and Λ2H1(M ;Z) is of rank 1. Let γ be the
generator of Λ2H1(M ;Z) ⊂ H2(M ;Z) such that ω · γ > 0, then

SW 0
ω,−(LK−1 ⊗ e)− SW 0

ω,+(LK−1 ⊗ e) =
(K−1 + 2e) · γ

2
.

Lemma 3.4. Let M be a rational or irrational ruled symplectic
4-manifold with symplectic canonical class K. For any class e ∈ H2(M ;
Z), SW 0

ω,−(LK−1 ⊗ e) is nontrivial if (K−1 +2e) is in the forward cone
and d(e) ≥ 0.

Proof. Choose a metric g of positive scalar curvature on M . With
such a metric and the zero self-dual 2-form, the Seiberg-Witten moduli
space of each Spinc structure is empty ([54]). Since K−1+2e is assumed
to be in the forward cone, (K−1 + 2e) · ωg > 0, where ωg is the unique
self-dual harmonic 2-form in the forward cone. So the pair (g, 0) is in
the positive chamber for the Spinc structure LK−1 ⊗ e. We thus find
that SWω,+(LK−1 ⊗ e) = 0. For a rational 4-manifold, b1 = 0, the
conclusion then follows from part one of Lemma 3.3. For an irrational
ruled 4-manifold, b1 ≥ 2 and γ is nonzero. Since (K−1 + 2e) is in the
forward cone and γ has square zero, (K−1 + 2e) · γ is nonzero. Hence
the conclusion in this case follows from part two of Lemma 3.3.

Now we need to review the notion of minimal reduction. Recall we
defined EM in §1, and M is said to be (smoothly) minimal if EM is
empty. Obviously, if M is a symplectic 4-manifold, EM,ω is a subset of
EM , and so M is symplectically minimal if it is (smoothly) minimal. In
fact it follows from the results in [22] that the reverse is also true.

Any 4-manifold M can be decomposed as a connected sum of a
minimal manifold N with some number of CP

2. Such a decomposition
is called a (smooth) minimal reduction of M , and N is a minimal model
of M . M is said to be rational if one of its minimal models is CP 2

or S2 × S2; and irrational ruled if one of its minimal models is an
S2-bundle over a Riemann surface of positive genus. When M has
nonempty symplectic cone and is not rational nor irrational ruled, M
has a unique minimal reduction (see [22] and also [31]).

The only minimal rational manifolds are CP 2 and S2 × S2. And a
non-minimal rational manifold has two kinds of decompositions. It is
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either decomposed as CP 2#lCP
2 or as S2 × S2#(l − 1)CP

2. We will
always use the first decomposition and call it a standard decomposition.
The picture for irrational ruled manifolds is similar. S2-bundles over a
Riemann surface of positive genus are the only minimal irrational ruled
manifolds. Fix the base surface Σg, there are two S2-bundles over it,
the trivial one S2 × Σg and the unique nontrivial one S2×̃Σg. A non-
minimal irrational ruled manifold also has two types of decompositions.
It is either decomposed as S2 ×Σg#lCP

2 or as S2×̃Σg#lCP
2. We will

use the first decomposition and call it a standard decomposition.
Let H be a generator of H2(CP 2;Z) and F1, . . . , Fl be the genera-

tors of H2 of the CP
2. Let U and T be classes in S2×Σg represented by

{pt}×Σg and S2×{pt} respectively. H,F1, . . . , Fl are naturally consid-
ered as classes in H2(CP 2#lCP

2;Z) and form a basis. We will call such
a basis a standard basis. Similarly, U, T, F1, . . . , Fl are naturally consid-
ered as classes in H2(S2 ×Σg#lCP

2;Z) and form a basis. Such a basis
is also called a standard basis. On CP 2#lCP

2, let K0 = −3H +
∑

i Fi;
and on S2 ×Σg#lCP

2, let K0 = 2U + (2− 2g)T +
∑

i Fl. By the blow
up construction (see e.g., [29]) K0 is a symplectic canonical class.

For a 4-manifold M and a choice of symplectic canonical class K,
recall the set of K-exceptional spheres introduced in §1 is EK = {E ∈
E|K · E = −1}. We will need the following facts about EK .

Lemma 3.5. Let M,ω be a symplectic 4-manifold with K as its
symplectic canonical class.

1. Let f be a diffeomorphism. Then Ef∗K = f∗EK .

2. EK = Eω, i.e., every class in EK is represented by an ω-symplectic
exceptional sphere. Moreover, if E1, . . . , Ep ∈ EK are pairwise
orthogonal, then they are represented by p disjoint ω-symplectic
spheres.

3. If E1 and E2 are two distinct classes in EK , then E1 · E2 ≥ 0.

4. Suppose M is not rational nor irrational ruled and it has a smooth
minimal reduction N#lCP

2, with Fi a generator of H2 of the i-th
CP

2. If we let δi = K · Fi, then δi = ±1 and

EK = {−δ1F1, . . . ,−δlFl}.

Proof. C is a −1 sphere symplectic with respect to ω if and only
if f−1(C) is a −1 sphere symplectic with respect to f∗ω. Since the
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(cohomology) class represented by f−1(C) is the pull back of the (coho-
mology) class represented C, and the symplectic canonical class of f∗ω
is f∗K, we have f∗EK = Ef∗K .

Part 2 was proved in [25] and [50], and Part 3 follows from Part 2
and the fact proved in [29] that, if E1 and E2 are in Eω and distinct,
then E1 · E2 ≥ 0. Finally, Part 4 was proved in [22].

Proposition 3.6. Suppose M,ω is a symplectic 4-manifold with
symplectic canonical class K. Suppose it has a (smooth) minimal re-
duction N#lCP

2. Let Fi be a generator of H2 of the i-th CP
2. Then

there is a symplectic form β on N , such that (M,ω) is obtained by blow-
ing up (N, β) at l points. Moreover, there is a diffeomorphism carrying
K to V ± F1 + · · · ± Fl, where V is a symplectic canonical class of N .

Proof. When there are l disjoint ω-symplectic −1 spheres in M , we
can simultaneously blow them down to obtain a symplectic 4-manifold
N ′. Suppose these ω-symplectic spheres represent F ′

1, . . . , F
′
l and V ′ is

the symplectic canonical class of N ′. Then K = V ′+F ′
1+ · · ·+F ′

l . And
if there is a diffeomorphism φ such that φ∗F ′

i = ±Fi for each i, then N ′

is diffeomorphic to N .
We start with the easier case when M is not rational nor ruled. By

Lemma 3.5, Eω = {δ1F1, . . . , δlFl}, where δi = ±1. Since Fi · Fj = 0 for
each pair i �= j, we can find l disjoint ω-symplectic spheres representing
δ1F1, . . . , δlFl. Blowing down these spheres, we obtain a symplectic 4-
manifold N, β. If V is the symplectic canonical class of β, then K =
V + δ1F1 + · · ·+ δlFl.

Suppose M is rational or irrational ruled. The Fi are represented
by disjoint smoothly embedded −1 spheres. By the proof of Theorem 1
in [22], there exists a diffeomorphism φl such that F ′

l = φ∗
l Fl satisfies

F ′
l ·K = −1.
To describe the diffeomorphism, recall that if α is a class with square

−1, then one can define an automorphism of H2, the reflection R(α)
along α, as follows:

R(α)β = β + 2(β · α)α.
And if α ∈ E , then the reflection is realized by a diffeomorphism.

φl is in fact constructed as a composition of reflections along a series
of classes Y1, . . . , Yp represented by ω-symplectic −1 spheres. Moreover,
if we go through the proof carefully and use the fact, mentioned in the
proof of Lemma 3.5, that two ω-symplectic −1 spheres in two distinct
classes have nonnegative intersection, we find that the classes Yi have
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the following property: If A is represented by an ω-symplectic −1 sphere
and A ·Fl = 0, then A ·Yi = 0 for each i. Therefore A is invariant under
φl.

The class φ∗
l El−1 is still represented by a smoothly embedded −1

sphere. By repeating the above process, we find a diffeomorphism φl−1

such that φ∗
l−1φ

∗
l El−1 ·K = −1. Moreover, since F ′

l = φ∗
l Fl is orthogonal

to φ∗El−1 and represented by an ω-symplectic −1 sphere, φ∗
l−1F

′
l = F ′

l .
Repeating this process l − 2 more times, we get l − 2 more diffeomor-
phisms φl−2, . . . , φ1 such that the diffeomorphism φ = φ1 ◦ · · · ◦ φl has
the property that φ∗Fi ·K = −1 for each i. Therefore we find that the
symplectic 4-manifold M,ω can indeed be blown down to a symplectic
4-manifold diffeomorphic to N .

To prove the last statement, consider ω′ = φ∗ω. Its symplectic
canonical class is φ∗K and Fi · φ∗K = −1. So we can blow down
l disjoint ω′-symplectic −1 spheres in M,ω′ to obtain a symplectic 4-
manifold diffeomorphic toN . If V is the symplectic canonical class, then
φ∗K = V + F1 + · · ·+ Fl, i.e., K is carried by φ to V = F1 + . · · ·+ Fl.
The proof is complete.

We are ready to prove Theorem 1.

Theorem 1. Let M be a smooth, closed oriented manifold with
b+ = 1. There is exactly one equivalence class of symplectic canonical
classes. In fact, if M is minimal, the symplectic canonical class is
unique up to sign.

Proof. We first prove that, when M is minimal, if K is a symplectic
canonical class, then the only other symplectic canonical class is −K.

Case 1. M not rational nor irrational ruled.

Fix an orientation-compatible symplectic structure ω and let K be its
symplectic canonical class. We have K · ω ≥ 0 and K2 ≥ 0 by [28].
Suppose ω̃ is another orientation-compatible symplectic form and K̃ is
its symplectic canonical class. Since the symplectic canonical class of
−ω̃ is just −K̃, we can assume that ω̃ and ω are in the same component
of the positive cone so they determine the same forward cone. Again
we have K̃ · ω ≥ 0 and SW 0−(LK̃−1) = 1. Thus SW 0

+(LK̃−1 ⊗ K̃) = ±1
by the Symmetry Lemma 2.3.

The Spinc structure L
K̃−1 ⊗K̃ is of the form LK−1 ⊗e for some class

e. Comparing the determinant line bundles, we have

K̃−1 + 2K̃ = K−1 + 2e,
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and so 2e = K + K̃. To prove that K = K̃, it suffices to show that
e = K.

Since K̃ is in the closure of the forward cone, we have (K−1+2e)·ω ≥
0. By the first part of Lemma 3.2, if K2 > 0 or K is a torsion class, e
is equal to K. Therefore K = K̃ in this case.

By the second part of Lemma 3.2, in the remaining case whenK2 = 0
and K is not a torsion class, either e = rK for some rational number
r ≤ 1 or 2e − K is a torsion class. Since 2e = K + K̃, we have either
K̃ = (2r − 1)K for some rational number r ∈ [1/2, 1], or 2K̃ − K is a
torsion class. In both cases, it is easy to see that K̃2 = 0 and K̃ is not
a torsion class. Now if we start with ω̃ and K̃ and repeat the argument
above, we conclude that either K = (2r̃−1)K̃ for some rational number
r̃ ∈ [1/2, 1], or 2K − K̃ is a torsion class. Comparing the two sets of
relations, we find that, since K and K̃ are not torsion classes, the only
possibility is K̃ = (2r − 1)K and K̃ = (2r̃ − 1)K with r = r̃ = 1.
Therefore K = K̃.

Case 2. M rational or irrational ruled.

In this case it is proved in [25]. For the convenience of readers, we
briefly present the argument here. Let us recall that a classical theorem
of Wu states that a class c is the first Chern class of an almost complex
structure on M only if c2 = 2χ(M)+ 3σ(M) and its mod 2 reduction is
w2(M). This fact alone determines the choice of the symplectic canon-
ical classes up to sign when M is CP 2 or an S2-bundle over S2 via a
simple calculation.

WhenM is irrational ruled, the main observation is that, becauseM
has a metric of positive scalar curvature, by the above mentioned result
in [54] and Theorem 2.2, one concludes that the wall crossing number
of K−1 must be one. By Lemma 3.3,

(3.2) K−1 · γ = 2SW 0
−(LK−1)− 2SW 0

+(LK−1) = 2.

Invoking Wu’s theorem, we again find the choice of K is unique up to
sign.

Now suppose M is non-minimal. Let N#lCP
2 be a minimal reduc-

tion of M . Suppose V is a symplectic canonical class of N , then we have
just proved that the only other symplectic canonical class on N is −V .
Given any symplectic canonical class K of M , by Proposition 3.5, there
is a diffeomorphism carrying K to V ±F1+ · · ·±Fl or −V ±F1+ · · ·±Fl,
Using reflections along Fi, we see all the symplectic canonical classes of
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M can be carried to either V + F1 + · · · + Fl or −(V + F1 + · · · + Fl).
Therefore they are all equivalent. The proof of Theorem 1 is finished.

Let K be the set of the symplectic canonical classes. We can often
give a concrete description of K.

When M is rational and b− ≤ 9 (b− is the dimension of a maxi-
mal subspace of H2(M ;R)), K is the set of characteristic classes with
square 2χ(M) + 3σ(M), since it was shown in [25] that the group of
diffeomorphism acts transitively on this set.

When M is not rational nor ruled, let V be a symplectic canonical
class of N , it is easy to see from Theorem 1 and Proposition 3.6 that

K = {±V ± F1 · · · ± Fl}.

Proposition 3.7. Suppose M is irrational ruled and is given a
standard minimal reduction (S2 ×Σh)#lCP

2 and a standard basis. Let
D be the set of (l+1)-tuples d = {ε, c1, . . . , cl} with ε = ±2 and ci odd.
For each d ∈ D define

Kd = εU +
(8− 8g − l +

∑
i c

2
i )

2ε
T +

∑
ciFi.

Then K = {Kd|d ∈ D}.
Proof. In this case γ = T . By Equation (3.2), if K = aU + bT +∑

i ciFi is in K, then a = ±2. And since K is characteristic with square
8− 8g − l, K must be of the form Kd for some d ∈ D.

To show that Kd ∈ K, it suffices to show that K0 can be carried to
Kd by a composition of reflections along classes in E . Since T and Fi

are represented by disjoint spheres, and T is of square zero, it is easy to
see that −kT − Fi is in E for any k and i. Let e = aU + bT +

∑
i ciFi.

Under the reflection ri−1 along Fi,

ci −→ −ci, a −→ a, b −→ b, cj −→ cj if j �= i.

Under the reflection fk
i along −kT − Fi,

ci −→ 2ka− ci, b −→ b+ 2(−ka+ ci)k, a −→ a, cj −→ cj if j �= i.

Let d ∈ D be a sequence with ε = 2. Write ci as 4ki − τi with
τi = ±1. Denote the identity on H2(M ;Z) also by ri

1 for each i. Then

(3.3) Kd = (r1
τ1 ◦ fk1

1 ) ◦ · · · ◦ (rl
τl
◦ fkl

l )(K0)



uniqueness of symplectic canonical class 351

and thus is in K. For the case ε = −2, we just have to observe that
K−d = −Kd. In fact we have just proved that the set K is given by
{Kd,d ∈ D}.

Corollary 1. Let M be a smooth, closed oriented 4-manifold. The
number of equivalence classes of the symplectic canonical classes is fi-
nite.

Proof of Corollary 1. If M is a smooth, closed oriented 4-manifold
with b+ > 1, the number of Spinc structures L such that SW (L) is
nontrivial is finite ([54]). This corollary simply follows from this fact,
Theorem 2.2 and Theorem 1.

Corollary 3.8. Let M be a minimal 4-manifold with b+ = 1 and
nonempty symplectic cone. Suppose K is a symplectic canonical class.
If φ is a diffeomorphism, then φ∗K = ±K.

Proof. Let φ be a diffeomorphism. Since φ∗K is the symplectic
canonical class of φ∗ω, This corollary is immediate from the proof of
Theorem 1.

It follows from Corollary 3.8, up to sign, the action of φ on H2 is
determined by its restriction to L, the orthogonal complement of K in
H2(M ;Z). If K2 > 0, then L is negative definite, and therefore it has
only finitely many automorphisms. Since K2 = 2χ(M) + sσ(M) > 0,
we have the following generalization of Corollary 4.8 in [11]:

Corollary 3.9. Let M be a minimal closed, oriented 4-manifold
with b+ = 1 and nonempty symplectic cone. Let D(M) be the image of
diffeomorphisms of M in the automorphisms of H2(M ;Z). Then D(M)
is finite if 2χ(M) + 3σ(M) > 0.

4. C and CK

In this section, we are going to determine the K-symplectic cone
and the symplectic cone for a closed oriented 4-manifold with b+ = 1
and nonempty symplectic cone.

We start with some general properties of the K-symplectic cone.

Proposition 4.1. Let M be a closed, oriented 4-manifold and K
be a symplectic canonical class.

1. If K ′ is another symplectic canonical class, then CK∩CK′ is empty.

2. Let f be a diffeomorphism, then f∗CK = Cf∗K .
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3. Suppose M has b+ > 1 and b1, . . . , bl are the classes such that
SW (LK−1 ⊗ bi) is nontrivial. Then

CK ⊂ {e ∈ P | e ·K ≥ 0 and e ·K > |e · bi|for all bi �= ±K }.

Proof. We first claim that K − K ′ can not be a nonzero torsion
class. In the case b+ > 1, this follows from Theorem 2.4.1; in the case
b+ = 1, this is due to Theorem 1. Thus if e ∈ CK and e′ ∈ CK′ , we have
by Theorem 2.4

K · e > K ′ · e and K · e′ < K ′ · e′.
Consequently e �= e′ and the first part is proved.

If ω is a symplectic form with K as its symplectic canonical class,
then f∗ω is symplectic with f∗K as its symplectic canonical class.
Therefore the second part holds.

The last part follows directly from Theorem 2.4. The proof of the
proposition is complete.

We would like to remark that, for all the known manifolds with
trivial K, which is either the K3 surface, or a T 2-bundle over T 2, the
third part is in fact an equality. Indeed if K is trivial, then the only
Seiberg-Witten basic class is 0 and the righthand side is just FP. When
M is a T 2-bundle over T 2, K is trivial and it has been shown explicitly
in [12] that all classes in P can indeed be represented by symplectic
forms. For K3 surface, this is also the case.

4.1 When M is minimal

In this subsection, M is a minimal closed, oriented 4-manifold with
b+ = 1. We will first describe the set AK . The knowledge of AK is then
used to provide a complete description of CK .

Proposition 4.2. Let M be a minimal symplectic 4-manifold with
b+ = 1. Let e ∈ H2(M) be a class in the forward cone. If e − K is
in the closure of the forward cone and is not equal to zero, then e is
represented by connected symplectic surfaces. In particular for N big,
Ne is represented by connected symplectic surfaces.

Proof. The assumption that e being in the forward cone and e−K
in the closure of the forward cone implies that (e − K) · e > 0. Since
d(e) = (e − K) · e is even, we have d(e) ≥ 2. It also implies that
2e−K = e+(e−K) is in the forward cone, thus (K−1+2e) ·ω > 0. By
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Lemmas 3.2–3.4, SW 0
ω,−(LK−1 ⊗ e) or SW 2

ω,−(LK−1 ⊗ e) is nontrivial if
M is ruled or d(e) ≥ b1. But if M is non-ruled, then b1(M) ≤ 2 by [28].
Therefore, under the assumption, SWω,−(K−1 ⊗ e) is nontrivial. By
Theorems 2.9(1) and 2.7, e is represented by an embedded symplectic
surface.

Finally we prove this surface is connected. Since M is assumed to
be minimal, every component has nonnegative square. Since e is in
the forward cone, e2 is positive. Therefore at least one component has
positive square. If the surface has more than one component, then it
violates the Light Cone Lemma 3.1. The proof is complete. q.e.d.

Theorem 2. Let M be a minimal closed, oriented 4-manifold with
b+ = 1 and K be a symplectic canonical class. Then

CM,K = FP(K).

Consequently, any real cohomology class of positive square is represented
by an orientation-compatible symplectic form.

Proof. Fix a symplectic form ω whose symplectic canonical class is
K. Since being symplectic is an open condition, we can assume that [ω]
is an integral class.

We first show that any integral e in the forward cone is in the K-
symplectic cone. The first step is to show that, for a large integer l,
le − [ω] is represented by a symplectic surface. Indeed if l is large,
since ω · e > 0, le − [ω] is in the forward cone and (le − [ω]) − K is in
the closure of the forward cone. Thus by Proposition 4.2, le − [ω] can
be represented by a symplectic surface. Given a symplectic surface C
with nonnegative self-intersection, the inflation process of Lalonde and
McDuff constructs a judicious Thom form ρ, representing the Poincáre
dual to the class of C and supported in an arbitrarily small neighborhood
of C, such that ω + κρ remains symplectic for all positive number κ.
Thus le = [ω] + (le− [ω]) is represented by a symplectic form.

Since any positive real multiple of a symplectic form is a symplectic
form with the same canonical class, we have shown that any real multiple
of an integral class is in the K-symplectic cone. To show this is true
for a general class α in the forward cone, we use a trick in [1]: α can
be written as α =

∑p
i=1 αi, where the rays of αi are arbitrarily close to

that of α and each αi = siβi for some positive real number si and an
integral class βi. Fix such a decomposition such that each betai is in
the forward cone. Our strategy is to show inductively that for any q,∑q

i=1 αi is in the K-symplectic cone.
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Since we know α1 is in the K-symplectic cone, we can choose a
symplectic form ω1 with α1 = [ω1]. For a large integer l, since β2·ω1 > 0,
by Proposition 4.2, lβ2 is represented by an ω1-symplectic surface. By
the inflation process, α1 + κ(lβ2) is represented by a symplectic form
for any real number κ. If we choose κ = si/l, then we find that α1 +α2

is in the K-symplectic cone. Now choose a symplectic form ω2 with
[ω2] = α1 +α2. It can be shown in the same way that lβ3 is represented
by a ω2-symplectic surface and (α1 + α2) + α3 is in the K-symplectic
cone. Repeating this process, we find that α is in the K-symplectic
cone. Thus we have shown that CK = FP.

The last statement is clear now because any nonzero real multiple
of an orientation-compatible symplectic form is still such a form. The
proof is complete.

Let us remark that Donaldson’s result mentioned in §1 fits nicely
with our results. Indeed, if e ∈ FP, Theorem 2 tells us that e can
be represented by a symplectic form ω. Donaldson’s construction then
produces ω-symplectic surfaces representing large multiples of e.

4.2 When M is not minimal

In this subsection M is a non-minimal 4-manifold with b+ = 1 and
nonempty symplectic cone.

The following result is the analogue of Proposition 4.2.

Proposition 4.3. Let M be a symplectic 4-manifold with b+ = 1
and symplectic canonical class K. Let e ∈ H2(M) be a class in the
forward cone. Assume that e−K is in the closure of forward cone and
e−K �= 0. Further assume that e ·E ≥ −1 for all E ∈ Eω. Then e can
be represented by a symplectic surface. Furthermore, if e ·E ≥ 0 for all
E ∈ Eω, then the symplectic surface is connected.

Proof. Let N be a (symplectic) minimal reduction of M , i.e., N
is minimal and M is obtained from N by blowing up some number of
points. Let F1, . . . , Ek be the exceptional classes for the blow down map
M −→ N and V be the symplectic canonical class of N . Thus Fi ∈ Eω

and K = V +
∑

Fi. Write e as e′ − ∑
niFi. Then

e′ · e′ = e · e+
∑

n2
i

e′ · V = e ·K −
∑

ni

e′ − V = (e−K) +
∑

(ni + 1)Fi.



uniqueness of symplectic canonical class 355

So e′ · e′ > 0 and e′ − KN is in the closure of the forward cone. If we
use Gri(M, e) to denote the part of Grω(M, e) in ΛiH1(M ;Z), then, by
Proposition 4.2, Gr0

ω(N, e′) or Gr2(N, e′) is nonzero. Since d(e) ≥ 2, by
Theorem 2.8, Gr0

ω(M, e) or Gr2
ω(M, e) is nonzero. Now the proposition

follows from Theorems 2.9(1) and 2.7.
A slightly weaker version of Propositions 4.2–4.3 appeared in [35]

and [31] (see Lemma 2.2 in [31] and the proof of Proposition 4.11 in this
paper). I. Smith informed us that via a construction using Lefschetz
fibrations in [7], he could obtain similar results about the existence of
symplectic surfaces.

For any two subsets U and F of H2(M), we define

UF = {e ∈ U | e · f > 0 for any f ∈ F }.

Theorem 3. Let M be a smooth, closed oriented 4-manifold with
b+ = 1 and K be a symplectic canonical class. Use any class in ΩK to
define the forward cone. Then

CK = FPEK
.

Proof. By Lemma 3.5(1) CK is contained in FPEK
. To prove the

inclusion in the other direction, we fix any integral symplectic form ω on
M with K as its symplectic canonical class. Let e be an integral class in
FPEK

. Since for a large integer l, le− [ω] and (le− [ω]−K are both in
the forward cone, and le ·E > 0 for any E ∈ Eω by Lemma 3.5, le− [ω]
is represented by a connected ω-symplectic surface by Proposition 4.3.
By the inflation process, we find that e is in the K-symplectic cone.

To pass to a general class α ∈ FPEK
, we notice that Biran’s trick

still works here. Since FPEK
is open, α can be written as a sum

∑
i αi,

where αi = siβi for some positive real number and βi is integral and lies
in FPEK

. The rest of the proof is exactly the same as that in Theorem 2.
The proof is complete.

We would like to point out that an amusing fact from Theorems 2
and 3 is that, in the case b+ = 1, CK is a convex set, which is not obvious
at all from its definition.

We would also like to speculate on the relation between the Kähler
cone and the K-symplectic cone for Kähler surfaces with b+ = 1 (or
equivalently zero geometric genus).

In the case of a rational surface, it is not known whether the Kähler
cone can be as big as the symplectic cone. By Nakai-Moishezon’s crite-
rion for ampleness, for a rational surface, the Kähler cone is simply the
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set of real cohomology classes with positive square, which are positive
on any irreducible curves with negative squares. In light of Theorem 5,
this is true if one can show that for any integer s, there are s generic
points on the projective plane such that, on the rational surface obtained
by blowing up these points, the only irreducible curves with negative
squares are smooth rational curves with square −1. It was observed in
[34] that this kind of question is related to Nagata conjecture on the
existence of equisingular plane curves. The connection was also pointed
out to the authors by Kollár. In fact some very interesting results ad-
dressing the connection has been obtained by Biran (see [3]). In [10]
good generic rational surfaces are studied. For those surfaces, the only
irreducible curves with negative squares are the exceptional curves and
those representing K−1. Thus by Nakai-Moishezon’s criterion for am-
pleness, the Kähler cone is given by

{e ∈ FP | e ·C > 0 for any holomorphic −1 curve C and e ·K−1 > 0 }.

For general symplectic 4-manifold with b+ = 1, for an almost com-
plex structure J with K as the canonical class, we can introduce the
J-symplectic cone

CJ = {e ∈ H2(M ;R) | e has a symplectic representative
compatible with J}.

When J is integrable, CJ is just the Kähler cone. It would be nice to
know when there exists J such that CJ=CK .

Now we will prove Theorem 4, which characterizes C in terms of the
set E . For this purpose we summarize some facts about E in the next
lemma.

Lemma 4.4. Let M be a closed oriented 4-manifold with C non-
empty. Suppose M has a (smooth) minimal reduction N#lCP

2. Let
F1, . . . , Fl be the generators of H2 of CP

2.

1. E = ∪K∈KEK , where K is the set of symplectic canonical classes.

2. If e ∈ C and E ∈ E, then e · E �= 0.

3. When N is not CP 2 nor an S2-bundle, E = {±F1, . . . ,±Fl}.
Proof. Parts 1 and 3 were proved in [22]. We only have to prove

Part 2. When b+ > 1, it is due to Taubes [48]. The case b+ = 1
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is implicitly in [22] and we will make it clear here. Suppose ω is a
symplectic form in the class of e and K is its symplectic canonical class.
Since K is characteristic and E2 = −1, K · E is odd. In particular
K · E = l �= 0. Then by Lemma 2.2 and Theorem T1 in [22], we find
that lE or −lE is represented by a symplectic surface (not necessarily
embedded). This implies that e · E �= 0. The proof is finished.

When M is rational or irrational ruled with b− ≥ 2, E is in fact
an infinite set. It is not hard to write down it explicitly when M is
irrational ruled. When M is rational, it is determined in [21] (it was
also shown in [24] that every class with square −1 is in E if b− ≤ 9).

We start the proof of Theorem 4 in the easier case when M is not
rational nor irrational ruled.

Proposition 4.5. Let M be a smooth, closed oriented 4-manifold
with b+ = 1 and CM nonempty. If M is not rational nor irrational
ruled, then

CM = {e ∈ P | e · E �= 0 for any E ∈ E}.
Proof. Suppose M is given a minimal reduction N#lCP

2. Let
F1, . . . , Fl be the generators of H2 of the CP

2. By Lemma 4.4, E =
{±F1, . . . ,±Fl}. If e ∈ CM , e ∈ CK for some K. By Lemma 3.5 and
Theorem 3, and e · Fi �= 0 for any i. Thus we have shown

CM ⊂ {e ∈ P | e · E �= 0 for any E ∈ E}.

Now let us prove the inclusion in the reverse direction. Suppose
e ∈ P and e · Fi �= 0. If V is one of the two symplectic canonical
classes of N , as mention in §3, any symplectic canonical class of M is
of the form K = ±V ± F1 ± · · · ± Fl. By possibly changing e to −e, we
can assume that e is in the forward cone determined by any symplectic
canonical class of the form V +±F1 ± · · · ± Fl. Let εi = (e · Fi)/|e · Fi|
and K = V +

∑
εiFi. Then EK = {ε1F1, . . . , εlFl}, and e · εiFi > 0.

Therefore e ∈ CK by Theorem 3. Thus we have shown that

{e ∈ P | e · E �= 0 for any E ∈ E} ⊂ CM .

The proof of Proposition 4.5 is complete. q.e.d.

To deal with the non-minimal rational and irrational ruled 4-mani-
folds, we need to introduce the notion of a reduced class.

Definition 4.6. For a non-minimal rational manifold with a stan-
dard decomposition CP 2#lCP

2 and a standard basis {H,F1, . . . , Fl},
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a class ξ = aH − ∑n
i=1 biFi is called reduced if{

b1 ≥ b2 ≥ · · · ≥ bl ≥ 0
a ≥ b1 + b2 + b3.

For a non-minimal irrational ruled manifold with a standard decompo-
sition S2 × Σg#lCP

2 and a standard basis {U, T, F1, . . . , Fl}, a class
e = aU + bT − ∑

ciFi is called reduced if{
c1 ≥ c2 ≥ · · · ≥ cl ≥ 0
a ≥ ci for any i.

The following facts about reduced classes in [21] are crucial.

Lemma 4.7. Let M be a non-minimal rational or irrational ruled
4-manifold with a standard decomposition and a standard basis.

1. There is a simple algorithm to transform any class of positive
square to a reduced class via a diffeomorphism.

2. Suppose e is a reduced class and E ∈ EK0. Then e · E ≥ 0, and
e · E > 0 if E is not one of the Fi.

Proposition 4.8. Let M be a non-minimal rational or irrational
ruled 4-manifold. Then

{e ∈ P | 0 < |e · E| for any E ∈ E} = CM .

Proof. LetM be given a standard decomposition and standard basis,
so we can define reduced classes. Let e be a class in P such that e·E �= 0
for any E ∈ E . By Lemma 4.7(1) e can be transformed to a reduced
class by some diffeomorphism, say φ. On one hand, since the set E is
preserved by the group of diffeomorphisms, φ∗e · E �= 0 for any E ∈ E .
On the other hand, since φ∗e is a reduced class, by Lemma 4.7(2),
φ∗e · E ≥ 0 for any E ∈ EK0 . Therefore φ∗e · E > 0 for any E ∈ EK0 .
By Theorem 3, we see that φ∗e ∈ CK0 . Therefore by Proposition 4.1,
e ∈ φ∗CK0 = Cφ∗K0 ⊂ C. Thus we have proved

{e ∈ P | 0 < |e · E| for any E ∈ E} ⊂ CM .

The inclusion in the reverse direction follows from Lemma 4.4(2).
The proof of Proposition 4.8 is complete. q.e.d.
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Propositions 4.5 and 4.8 immediately give us:

Theorem 4. Let M be a smooth, closed oriented 4-manifold with
b+ = 1 and CM nonempty. Then

CM = {e ∈ P | e · E �= 0 for any E ∈ E}.

When M is given a minimal reduction, we can give a more explicit
presentation of C.

Proposition 4.9. Suppose M is as in Theorem 4 and is given a
minimal reduction N#lCP

2. Let Fi be the generators of H2 of the CP
2.

When M is rational or irrational ruled, further assume the minimal
reduction is standard and a standard basis is given.

1. When M is not rational nor irrational ruled, A class e with positive
square is represented by a symplectic form if and only if e ·Fi �= 0
for any i.

2. When M is irrational ruled, a class e = aU + bT +
∑

i ciFi with
positive square is represented by a symplectic form if and only if
Ci/A is not an integer for any i.

3. When M is rational, a reduced class e = aH−∑n
i=1 biFi with pos-

itive square is in CK0 if and only if bi > 0 for each i. For a general
class e, transform it to a reduced class e′. Then e is represented
by a symplectic form if and only if e′ is thus represented.

Proof. The first part is contained in the proof of Proposition 4.5. If
M is irrational ruled, the conclusion follows immediately from:

Lemma 4.10. If Y = {s1T ±F1, . . . , slT ±Fl, si ∈ Z}, then E = Y .

Proof. We have shown in course of the proof of Proposition 3.7 that
Y ⊂ E . To prove the inclusion in the reverse direction, by Lemma 4.4(1),
it suffices to show that for every symplectic canonical class K, EK ⊂ Y.

Consider K0 first. If the symplectic form ω is obtained by blowing
up a product symplectic form on S2 ×Σh which pairs positively with U
and T , then it has K0 as the canonical class. For such a form, it is not
hard to show (see [1]) that

EK0 = {F1, . . . , Fl, T − F1, . . . , T − Fl}.



360 tian-jun li & ai-ko liu

So EK0 ⊂ Y. By Proposition 3.7, each symplectic canonical class is of
the form Kd. By Equation (3.3) and Lemma 3.5,

EKd
= (r1

τ1 ◦ fk1
1 ) ◦ · · · ◦ (rl

τl
◦ fkl

l )EK0

= {−2k1T + τ1F1, (1 + 2k1)T − τ1F1, . . . ,

− 2klT + τlFl, (1 + 2kl)T − τlFl}.
Notice that τi = ±1 for each i, EKd

⊂ Y . Lemma 4.10 is proved. q.e.d.

Suppose M is rational. Let e = aH − ∑l
i=1 biFi be a reduced class

with positive square. If it is in CK0 , then since Fi ∈ EK0 , it is necessary
that bi > 0 for each i. Conversely, if bi > 0 for each i, by Lemma 4.7(2)
and Theorem 3, it is in CK0 . The first statement is thus proved. The
last statement is obvious, so the proof of Proposition 4.9 is finished.

q.e.d.

As we previously remarked, when M is rational, though E can be
determined, it is hard to write down it explicitly. So we do not have a
as nice presentation of C as those in the other cases. However, in light
of Lemma 4.7(1), it is still a very effective one.

Having determined the image of the map CC : ΩM −→ H2(M ;R),
we are also able to say something about its inverse image by generalizing
a result of McDuff.

Proposition 4.11. Let M be closed oriented 4-manifold with b+ =
1. Let ω1 and ω2 be two cohomologous symplectic forms. If they can be
joined by a path of symplectic forms then they can be joined by a path
of cohomologous symplectic forms.

Proof. This result was proved as Theorem 1.2 in [31] under the
assumption that M is not of ‘Seiberg-Witten simple type’. In [31], a
symplectic 4-manifold is said to be of ‘SW simple type’ if its only nonzero
Gr0 invariant occur in classes with zero Gromov-Taubes dimension. For
a symplectic 4-manifold M not of ‘SW simple type’, what is used in the
proof in [31] is the following fact: assuming [ω] is rational, then there
is a basis of H2(M ;Q) formed by rational classes n[ω], e1, . . . , ek with
e2
j < 0 for all j such that l(n[ω] ± ej) is represented by a connected

ω-symplectic surface for all j and large l.
By Propositions 4.1–4.3, all symplectic 4-manifolds with b+ = 1

satisfy this property. So the proof of this Proposition is identical to
that of Theorem 1.2 in [31].

In terms of the map CC, the result above can be interpreted as say-
ing that, when restricted to a connected component of ΩM , the inverse
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image of a point of CC is connected. This result is useful in §6 for the
duality conjecture.

5. Symplectic Casteluovo’s criterion

In this and the following sections we will study further AK , the set
of ‘K-stable’ classes of symplectic surfaces. Here we will determine, for
a minimal 4-manifold, which integral multiples of K is in AK . As an
interesting corollary, we obtain the sympletic Casteluovo’s criterion for
rationality.

Lemma 5.1. Let M be a minimal 4-manifold with b+ = 1 and K a
non-torsion symplectic canonical class. AK contains only non-torsion
classes with nonnegative square.

Proof. We observe that, by definition, if a ∈ AK and e ∈ CK , then
a · e > 0. So obviously a can not be a torsion class. Suppose a ∈ AK

has negative square. The orthogonal complement of a in H2(M ;R) still
contains classes of positive square. Let β be such a class. By Theorem 2,
either β ∈ CK or −β ∈ CK . However, the fact that a · β = 0 contradicts
with the observation above. The proof is finished.

Notice that, for a fixed symplectic structure, there might be classes
of negative square represented by symplectic surfaces. Such examples
are easy to find. For any positive integer n, the Hirzebruch surface
F2n is a minimal algebraic surface having holomorphic curves (hence
symplectic with respect to any Kähler form) of square −2n in F2n.

Proposition 5.2. Let M be a minimal 4-manifold with b+ = 1 and
K a non-torsion symplectic canonical class. Then nK is in AK in the
following cases:

1. n ≤ −1 and M is CP 2, S2 × S2 or an S2-bundle over T 2.

2. n = 1 and M has b1 = 2 and is not an S2-bundle over T 2.

3. n ≥ 2 and M is not rational nor irrational ruled.

Proof. By Lemma 5.1, for any pair M,K with K2 < 0, no multiple
of K is in AK . Such manifolds are S2-bundles over Riemann surfaces
of genera at least 2.

Assume now that M is not an S2-bundle over a Riemann surface of
genus at least 2. Then for any integer n, the Seiberg-Witten dimension
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of LK−1 ⊗ nK is nonnegative, because

d(LK−1 ⊗ nK) = −K · nK + nK · nK = (n2 − n)K2 ≥ 0.

Let ω be a symplectic form with K as its symplectic canonical class.
The manifolds in Case 1 satisfy K2 ≥ 0, K · ω < 0. So K−1 + 2nK

is in the forward cone for all n ≤ −1. Thus it follows from Lemma 3.4
that Grω(nK) is nontrivial for n ≤ −1 and Case 1 is settled.

The manifolds in Case 2 satisfy K2 ≥ 0 and K ·ω > 0. Let γ be the
generator of Λ2H1(M ;Z) such that ω ·γ ≥ 0. By Lemma 3.1, K ·γ ≥ 0.
By Theorem 2.2 and Lemma 2.3 SW 0

ω,+(LK−1 ⊗K) = 1. When b1 = 2,
by Lemma 3.3,

SW 0
ω,−(LK−1 ⊗K) = SW 0

ω,+(LK−1 ⊗K) +
1
2
K · γ �= 0

unless K · γ = −2. But this is impossible, so by Theorem 2.9 Grω(K)
is nontrivial. Case 2 is settled.

By Lemma 3.2, SWω,+(LK−1 ⊗ nK) is zero if n ≥ 2. Since the
manifolds in Case 3 satisfy K · ω > 0, (K−1 + 2nK) · ω > 0 for n ≥
1. When b1 = 0, or when b1 = 2 and K · γ �= 0, by Lemma 3.3,
SW 0

ω,−(LK−1 ⊗K) is nonzero. Therefore Grω(nK) is nonzero for n ≥ 2.
When b1 = 2 and K · γ = 0, from Case 2 we know Grω(K) is

nontrivial. By Lemma 3.1, K must have square zero, so it is represented
by an embedded symplectic torus. Thus, for each n ≥ 2, nK can be
represented by an embedded symplectic torus as well by Lemma 2.6.
The proof of Proposition 5.2 is complete.

Now we can give the proof of the symplectic Castlenuova criterion.

Corollary 2. Let M be a closed, oriented 4-manifold with b+ = 1
and a non-torsion symplectic canonical class K. If b1 = 0 and 2K is
not in AK , then M is rational.

Proof. First assume that M is minimal. By Proposition 5.2, M
must be rational or irrationally ruled. Since irrational ruled manifolds
have b1 > 0, M is rational as claimed.

6. K-surface cone and duality conjecture

Recall that the rational K-surface cone SQ
K , introduced in §1, is the

cone
∑

v∈AK
Q+v in H2(M ;Q). In this section we will study this cone

and discuss the duality between it and the rational K-symplectic cone
CQ

K = CK ∩H2(M ;Q) inside H2(M ;Q).
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We start with a couple of simple algebraic lemmas. Let W be a
subset in H2(M ;Q). Define the dual of W to be

W∧ = {v ∈ H2(M ;Q) | v · w > 0 for any w ∈ W}.
Clearly W∧ is a convex subset, and W∧∧ = W if W is convex.

Lemma 6.1. Let M be a symplectic 4-manifold with symplectic
canonical class K. Then SQ

K is convex, and

SQ
K ⊂ CQ∧

K and CQ
K ⊂ SQ

K

∧
.

Proof. It directly follows from the definitions of the two cones.

Lemma 6.2. Let M be a closed oriented 4-manifold with b+ = 1.
Let FPQ be a component of PQ and F be a subset of H2(M ;Q). Then

FPQ
F

∧
= FPQ +

∑
f∈F

Q+f.

Proof. Let us first show that FPQ = FPQ∧. By the Light Cone
Lemma 3.1, FPQ ⊂ FPQ∧. By the argument in Lemma 5.1 FPQ∧ ⊂
FPQ. Since∑

f∈F

Q+f ⊂ FPQ
F

∧
and FPQ = FPQ∧ ⊂ FPQ

F

∧
,

we have, by the convexity of FPQ
F

∧
,∑

f∈F

Q+f + FPQ ⊂ FPQ∧
F .

Let p ∈ FPQ +
∑

f∈F Q
+f . Then p · e > 0 for any e ∈ FPQ, thus

p ∈ FPQ∧
= FPQ. And p · f > 0 for any f ∈ F. ThereforeFPQ +

∑
f∈F

Q+f

∧

⊂ FPQ
F .

The proof is complete. q.e.d.

Theorem 5. Let M be a smooth, closed oriented 4-manifold with
b+ = 1. Let K be a symplectic canonical class. Use any class in ΩK to
define the forward cone. Then

FPQ +
∑

Ei∈EK

Q+Ei ⊂ SQ
K ⊂ FPQ +

∑
Ei∈EK

Q+Ei.
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Proof. We start with the first inclusion. Let ω be a symplectic form
with K as its symplectic canonical class. By the same argument as in
Propositions 4.2–4.3, we can show that, if e is an integral class in FPQ,
then for a large integer l, SWω,−(LK−1 ⊗ le) is nontrivial. Therefore
le ∈ SQ

ω by Theorem 2.9(1). We thus have shown that FPQ ⊂ SQ
K . By

Lemma 3.5, EK = Eω, so ∑
Ei∈EK

Q+Ei ⊂ SQ
K .

By the convexity of SQ
K , we have

FPQ +
∑

Ei∈EK

Q+Ei ⊂ SQ
K .

The second inclusion follows from Theorem 3 and Lemmas 6.1–6.2.
The proof is complete. q.e.d.

Duality Conjecture. LetM be a closed, oriented 4-manifold with
b+ = 1. Suppose K is a symplectic canonical class, then the rational
K-surface cone and the rational K-symplectic cone are dual to each
other.

We remark that this conjecture can be viewed as the analogue of the
duality between the Kähler cone and the cone of numerically effective
curves on an algebraic surface.

We will now show the Duality Conjecture holds for several classes
of minimal 4-manifolds.

Lemma 6.3 Let M be a closed oriented 4-manifold with b+ = 1 and
a symplectic canonical class K. The conjecture holds for M and K if
any class e ∈ FPQ(K) with square 0 is in SQ

K .

Proof. CQ
K is convex by Theorem 3, so CQ

K

∧∧
= CQ

K . Therefore
CQ

K = SQ
K

∧
if SQ

K = CQ
K

∧
. By Lemmas 6.1–6.2 and Theorems 3 and 5,

FPQ +
∑

Ei∈EK

Q+Ei ⊂ SQ
K ⊂ CQ

K

∧
= FPQ

EK

∧
= FPQ +

∑
Ei∈EK

Q+Ei.

So SQ
K = CQ

K

∧
if the complement of FPQ(K) in FPQ(K) is in SQ

K .
Since this complement consists of the classes e ∈ FPQ(K) with square
0, the lemma is proved.
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Two cohomologous symplectic forms are said to be isotopic if they
can be joined by a path of cohomologous symplectic forms. For a sym-
plectic form ω, recall that Aω is the set of integral classes which can be
represented by ω-symplectic surfaces.

Lemma 6.4 Let M be a closed, oriented 4-manifold with b+ = 1.
If ω1 and ω2 are two symplectic forms which are deformation equivalent
and cohomologous, then Aω1 = Aω2.

Proof. By the basic result of Moser [39] it is easy to see that
Aω1 = Aω2 if ω1 and ω2 are isotopic. Now the lemma follows from
Proposition 4.11. q.e.d.

Proposition 6.5 The Duality Conjecture holds for:

a) 4-manifolds with torsion symplectic canonical classes, b+ = 1 and
b1 = 0.

b) CP 2 and S2 × S2.

c) S2-bundles over T 2.

d) S2 × Σ with Σ a surface with genus at least two.

e) T 2-bundles over T 2 with b+ = 1, Λ2H2(M ;Z) nontrivial, and
having a unique deformation class of symplectic forms.

f) S1 × X with X a fibered 3-manifold with b1 = 1 and the genus
of the fiber at least 2, and having a unique deformation class of
symplectic forms.

Proof. For the manifolds in e) and f), symplectic structures can be
constructed by the construction in [52]. So all the manifolds listed have
symplectic structures. Let K be any one of the two symplectic canonical
classes. Let ω be an arbitrary symplectic form with K as its symplectic
canonical class. By Lemma 6.3 what we need to show is, for any class
e in FPQ(K) with e2 = 0, some (rational) multiple of it is represented
by an ω-symplectic surface. We will show it is the case for manifolds in
a)–e).

For manifolds in a), K is a torsion class, so any class e in FPQ(K)
with square zero has d(e) = 0 and (K−1 + 2e) · ω > 0. If, in addition
b1 = 0, by Lemmas 3.1 and 3.2(I), SWω,−(LK−1 ⊗ e) is nontrivial. By
Theorem 2.9, e ∈ AK .
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For manifolds in b), K−1 is in the forward cone. Thus K−1 + 2e is
in the forward cone if e is in FPQ(K). By Lemma 3.4 and Theorem 2.9
Grω(e) �= 0 for any class e ∈ FPQ.

For manifolds in c), K−1 has square zero and is in FPQ(K). By
the same argument as above, if e is in FPQ(K) with square zero and
e �= K−1, then it is in AK . The fact that K−1 is also in AK is proved
in Proposition 5.2.

For a product irrational ruled 4-manifold S2 × Σ, if e has square 0,
then it is Poincaré dual to either a multiple of [S2] or [Σ]. On such a
4-manifold every symplectic form is isotopic to a product from by [18].
Since any product symplectic form remains a symplectic form on any
S2 and Σ, the conclusion follows from Lemma 6.4.

For the manifolds in e), K is trivial and both b1 and b2 are equal to
two. If γ is the nontrivial generator of Λ2H2(M ;Z) as in Lemma 3.3,
it is the class of the fibers. Since the intersection form on H2(M ;Z)
is (1)⊕ (−1), the classes with square zero are (rational) multiples of γ
and another integral class which we denote by η. We can assume that
η · ω > 0. Since K = 0, d(η) is equal to zero. Notice that γ · η �=
0. This, together with Lemmas 3.2–3.3, imply that SWω,−(LK−1 ⊗
η) is nontrivial. Therefore Grω(η) is nontrivial. All these manifolds
are geometric, and it is shown in [12] that every class with positive
square can be represented by a ‘geometric’ symplectic form such that
is symplectic on the fibers. In particular, the class of ω is represented
by such a ‘geometric’ symplectic form ω′. Under the assumption that
there is a unique deformation class of symplectic forms, the conclusion
follows from Lemma 6.4.

For the manifolds in f), the Künneth formula tells us that b1 and b2

are again equal to two. Since K2 = 2χ(M) + 3σ(M), K has square 0.
Let g be the genus of the fibers of π : X −→ S1. ThenM = S1×X fibers
over the 2-torus with fibers of genus g. Since g is at least 2, the class of
the fibers is nontrivial in H2(M ;Q). In fact by the construction in [52],
the fibers are symplectic with respect to some symplectic structures on
M . By the ajunction formula in [25], K · γ = (2g − 2). Therefore K
is nontrivial in H2(M ;Q) as well and the classes with square zero are
(rational) multiples of K and γ. By Proposition 5.2 K is in AK , so we
only have to deal with γ by explicitly constructing a symplectic form ω′

in the class of ω such that the fibers are ω′-symplectic. Then, under the
assumption that there is a unique deformation class of symplectic forms,
the conclusion that γ is represented by an ω-symplectic surface again
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follows from Lemma 6.4. Choose a metric on X such that π : X −→ S1

is a harmonic map. Let ∗X be the star operator on X with respect
to this metric. Let dθ be the volume form of the base circle, and µ
be ∗Xπ∗dθ, . Let ds be the volume form of the product circle. Then
for any pair of positive numbers α and β, the form ±(αds∧ dθ+ βµ) is
symplectic and restricts to a symplectic form on each fiber. In particular
the class of ω can be thus represented. The proof of Proposition 6.5 is
complete. q.e.d.

We finish the paper by mentioning that we can also introduce the
real K-surface cone SK . It is easy to check that the statements in Lem-
mas 6.1–6.3 and Theorem 5 remain valid for SK if the Q are removed
or replaced by R. The real K-surface cone is similar to (often smaller
than) the cone of numerically effective curves. In fact, a more precise
analogue of the real K-surface cone is the deformed symplectic effec-
tive cone introduced by Ruan in [43]. In particular, if ΩK has only one
connected component, then they coincide.
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